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INTRODUCTION 

The attractor of a dynamical system is a subset 

of the state space to which orbits originating 

from typical initial conditions tend as time 

increases. An attractor is called chaotic or 
strange if it has a fractal structure in the phase 

space. While in case of permanent chaos the 

phase points of the system do never leave the 
chaotic attractor, if the chaos is transient the 

trajectory is staying only a finite time at the 

chaotic attractor and after it runs asymptotically 
into a simple attractor. If two or more attractors 

coexist, trajectories may hesitate for a long time 

before getting captured by one of the attractors. 

The basin of attraction of an attractor is the set 
of initial conditions which produces trajectory 

approaching the attractor. Fractal basin 

boundaries are common properties of dynamical 
systems [1]. Trajectories starting from a fractal 

boundary show often a transient chaos. In 

dissipative systems without any driving all 
motion must eventually cease because of the 

continuous decay of the energy. In this case, 

sequential magnifications of the phase space 

indicate that the set of long lifetimes becomes 
increasingly sparse at sufficiently small scales, 

so we can find that the fractality of the basin 

boundary is scale-dependent (the fractal-

dimension of the basin boundaries is found to 
decrease with magnification and tend to unit). 

This behaviour has been termed the doubly 

transient chaos. It is an interesting fact that the 
character of chaos changes when driving is 

added. For example in the case of external 

excitation unstable periodic orbits immediately 

appear, and the long term dynamics tend to 
permanent chaos [2]. 

THE MECHANICAL MODEL 

In our previous works we have investigated the 

chaotic properties of simple mechanical systems 

[3],[4]. In the present paper the dynamic 

behaviour of a ball moving in a complex-shaped 
vessel will be studied [5],[6]. The shape of the 

bowl is defined by a height function z(x,y) of 

the points of the bowl, this function can be 
identified with the gravitational potential for the 

moving ball. To approach the real motion the 

equations are completed with a term of friction. 
If this term is zero, the motion is conservative; 

in other cases it is dissipative. It is worth 

mentioning that if the z(x,y) function is given, 

then the bowl can be fabricated by a rapid 
prototyping procedure and the real motion of the 

ball can be also studied. 
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The motion of a point-like body of unit mass 

which is moving in a V(x,y) potential field 
under the influence of friction which is 

proportional with the velocity can be described 

by the equations: 

,    
V V

x x y y
x y

 
     

 
     ,       (1) 

where α is the coefficient of friction. (If α=0 

then the motion is conservative.) Introducing the 

coordinates of the velocity as new variables, the 
equations can be transformed into the usual 

form: 
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The height (potential) function of the bowl is (x, y and z are measured in cm): 

   4 4 4 2 2 2 2,     10 9y 26 100 300 5000z x y V(x, y) x + x y x y       .    (3) 

 

 

1.a. Maple display 

 

 

 

1.b. A real bowl which is like the simulated one 

Figure1. A complex-shaped vessel 

It is an important fact that the deepest points of 
the bowl situate near the four vertices of the 

bowl. The potential energy of the moving ball is 

the lowest at these points therefore these are the 
stable equilibrium positions of the ball.These 

points are: (x1=0; y1=4.0825), (x2=0; y2=-

4.0825), (x3=7.0711; y3=0) (x4=-7.0711; 
y4=0). 

The solution of the equations of motion are 

studied by the Dynamics Solver [7] program 

which is an ideal (and free!) tool for the 
investigation of dynamic systems. 

RESULTS 

Motion with Friction 

In case of frictional motion the ball comes to 

rest in a well near one vertex of the bowl, so as 

it is expected the trajectories after a transient 
terminate either of the minimum points of the 

potential. These transient motion can be often 

chaotic. However, in spite of the motion is 
initially chaotic, finally it becomes periodic or 

stops, so chaotic part is a transient one. In our 

case the attractors of the motion are the four 
potential well where the ball comes to a rest. 

The following figures show the trajectories of 

the motion with frictional coefficient of 

α=0.005. The ball was released from two 
different points of the rim of the bowl with zero 

initial velocity. 

In the following the structure of the basins of 
attraction for the motion occurring in the bowl 

(in potentials) which can be seen in Fig. 1 will 

be revealed. As it has been mentioned the 
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potential characterising the bowl has four 

potential well which were determined earlier. In 
the maps of the fig 2 shows below the potential 

wells were marked with different colours and 

their basins of attractions was painted by the 

same colour too. The colours belonging to the 

attractors (x1=0; y1=4.0825), (x2=0; y2=-
4.0825), (x3=7.0711; y3=0), and (x4=-7.0711; 

y4=0) are red, green, blue and yellow, 

respectively. 

 

 

 

 

 

 

 

Figure2.Trajectories of the motion with nonzero friction at different initial conditions 

 

(a)  , 10;10x y   
 

(b)    6; 4 , 6; 4x y       

 

(c)    5.6; 5.4 , 4.8; 4.6x y       

 

(d)    5.48; 5.46 , 4.7; 4.68x y       

Figure 3.Basins of attraction for the bowl of potential (3) (Friction coefficient: 0.01  , resolution:500 500  

initial velocity: 0) 

Figures show the structure of the basins which 

was formed if the friction coefficient was 

α=0.01. The sequence of pictures is arranged 

alphabetically in the figures. Every picture 

consists of 500 500  points and in every one a 

small square is chosen at a boundary of either 

basins. Every member of the sequence of the 

pictures shows the ten times magnified image of 

the square marked in the preceding picture. 
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(a)  , 10;10x y   

 

(b)    6; 4 , 4; 2x y       

 

(c)    5; 4.8 , 3.6; 3.4x y       

 

(d)    4.86; 4.84 , 3.56; 3.54x y       

Figure4. Basins of attraction for the bowl of potential (3) (Friction coefficient: 0.01  , resolution:500 500  

initial velocity: 0) 

The boundaries of these basins show fractal 
geometry which can be described by a very 

complicated structure like a Cantor set. In other 

words, whenever two basins seem to meet, we 
discover upon closer examination that a third 

basin can be found between them, and so ad  

infinitum. 

In tables below fractal dimension of boundaries 

between the attraction basins shown in Fig. 3.(c) 

and Fig.4.(c) are given as a function of the 
magnification. 

Table1. Fractal dimension of boundaries between the attraction basins are given as a function of the 

Magnification 

 

 

The study of transient chaos can be a very important didactic tool in the demonstration of 

fractal geometry [2]. Generally fractals appear in the phase space of the chaotic systems.  

Fractals in an abstract space are sometimes not 

expressive and meaningful to students. In 

contrast to this the attraction basins of the 
attractors of transient chaos exhibit in the real 

space, so the properties of the fractals being 

visualized in the real geometric space appear 

more suggestively for the students.. The 
development of the fractal boundaries are 

illustrated well by the video [8] showing the real 

and simulated motion of a magnetic pendulum. 

The fractal basin boundaries have shown 
irregular behaviour: in this case the classical 

parameters used to describe chaos became time 

dependent and the structure of the basins was 

not fully invariant upon magnification. The 



Double Transient Chaotic Behaviour of a Rolling Ball 

Open Access Journal of Physics V2● 12 ● 2018                                                                                                15 

 measured dimension of the basin boundaries 

can be non-integer over all finite scales, but 
have asymptotic fractal co-dimension: one. This 

phenomenon is recently referred as doubly 

transient chaos [9]. 

Dissipative motion with external driving force 

It is an interesting and important fact that the 

character of chaos changes when driving is 
added. Let’s put into the system investigated a 

point like body (e.g. a small magnet) which 

attracts the moving (steel) ball. Oscillate the 
attracting body harmonically along the z axle, 

about the z0 point with period Tz and 

amplitudeza. The form of the driving force is: 
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and the coupling constant acting between the magnet and the moving ball is denoted by k. For the 
simulations the z0=0, za=0.5, Tz=0.1 values were chosen. 

 

(a)  , 10;10x y   

 

(b)    6; 4 , 4; 2x y       

 

(c)    5; 4.8 , 3.6; 3.4x y       
 

(d)    4.86; 4.84 , 3.56; 3.54x y       

Fig ure5. Basins of attraction for the bowl of potential (3) (Friction coefficient: 0.01  , and coupling 

constant k=0.1; resolution:500 500  initial velocity: 0) 

Simulations demonstrate, that in case of small 

coupling constants the transient chaotic nature 

of the motion is maintained. However, with 
increasing k the characteristic time of the 

transient behaviour is also increasing and when 

k reaches a critical value (in our case k=1.1) 
permanent chaos appears. Studying image-

sequences Fig.4 and 5 the structure of the 

attraction basin of the same region of the phase 

space can be compared at k=0 (pure dissipative 

case) and k=0.1. It is also visually well 

perceptible the increase of the fractal dimension 
of the boundary region with the increase of k. 

Fig. 6 demonstrates the change of the fractal 

geometry in a small region of the phase space. 
In case of k=0, k=0.1 and k=1.1 the fractal 

dimensions are 1.26, 1.79 and 2, respectively. 

The last dimension shows that if the coupling 
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constant reaches its critical value, the attracting 

basins cease and transient chaos is replaced by 

permanent one. 

 

 

4.a. k=0 

 

 

4.b. k=0.1 

 

 

4.c. k=1.1 

Figure6. Basins of attraction in the region of    5; 4.8 , 3.6; 3.4x y       with different k. 

SUMMARY 

Studying the transient chaos is very important 

since real physical processes reach their 
stationary state through transients. At university 

courses these transients has been neglected very 

often, however, the development of the stable 
motion might depend very sensitively on the 

initial part of the motion. Chaotic transient 

support the recognition of the importance of the 
initial values also. In this paper we 

demonstrated the importance of the transients 

with a simple example. It has been shown that 

the initial motion of a ball in a complex shaped 
vessel can exhibit double transient chaos, but 

applying a driving force the character of the 

motion changed to be permanent chaos. 
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